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Background

• A line sweep algorithm is one that uses a conceptual
sweep line to solve various problems in Euclidean space.

• The basic idea is that one imagines a line swept across the
plane, stopping at certain points, whilst doing geometric
operations on points in the immediate vicinity of the
sweep line.

• Usually, the complete solution is available once the line
has passed over all objects.
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Closest pair problem

Problem

Given a set of n points, find a pair of points with the smallest
distance between them

• Of course, one can do a brute force algorithm in O(n2)
time.

• A line sweep algorithm can reduce this to O(n log n).
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Algorithm

• Sort all points by their x-coordinate and keep track of best
distance so far as h

• Suppose we’ve processed points 1 to k − 1:

• We process point k and maintain a set of already
processed points whose x coordinates and within h of
point k.

• We add the point being processed to the set and remove
points from the set when we move one (or when h is
decreased)

• The set itself is ordered by y-coordinate.

• We then simply check for points within the range: yk − h
to yk + h and update h if a new best is found.
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Code

Pseudocode:

sort(p, p+n, xcomp)

set<ycomp> box

box.insert(p[0])

int left = 0

for i in range(1, n):

while (left < i) and (p[i].x - p[left].x > h):

box.erase(p[left])

left++

for (it = box[p[i].y-h], it < box[p[i].y+h]):

h = min(h, dist(p[i], it))

box.insert(p[i])

return h
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Time Complexity

• For each point, removal from the set is O(log n). Each
point is only removed once, giving O(n log n) in total for
removal.

• We can extract the required range from the set in
O(log n) time (for C++, one can use the lower bound
function on a set)

• Within this range there can only be O(1) elements, since
any two points in the set has distance at least h.

• The search for each point is therefore at most O(log n),
giving a total time of O(n log n)

7 / 17



Line Sweep
Algorithms

Robin Visser

Background

Examples

Closest Pair

Line Segments

Union of
rectangles

Convex hull

Summary

Time Complexity

• For each point, removal from the set is O(log n). Each
point is only removed once, giving O(n log n) in total for
removal.

• We can extract the required range from the set in
O(log n) time (for C++, one can use the lower bound
function on a set)

• Within this range there can only be O(1) elements, since
any two points in the set has distance at least h.

• The search for each point is therefore at most O(log n),
giving a total time of O(n log n)

7 / 17



Line Sweep
Algorithms

Robin Visser

Background

Examples

Closest Pair

Line Segments

Union of
rectangles

Convex hull

Summary

Time Complexity

• For each point, removal from the set is O(log n). Each
point is only removed once, giving O(n log n) in total for
removal.

• We can extract the required range from the set in
O(log n) time (for C++, one can use the lower bound
function on a set)

• Within this range there can only be O(1) elements, since
any two points in the set has distance at least h.

• The search for each point is therefore at most O(log n),
giving a total time of O(n log n)

7 / 17



Line Sweep
Algorithms

Robin Visser

Background

Examples

Closest Pair

Line Segments

Union of
rectangles

Convex hull

Summary

Time Complexity

• For each point, removal from the set is O(log n). Each
point is only removed once, giving O(n log n) in total for
removal.

• We can extract the required range from the set in
O(log n) time (for C++, one can use the lower bound
function on a set)

• Within this range there can only be O(1) elements, since
any two points in the set has distance at least h.

• The search for each point is therefore at most O(log n),
giving a total time of O(n log n)

7 / 17



Line Sweep
Algorithms

Robin Visser

Background

Examples

Closest Pair

Line Segments

Union of
rectangles

Convex hull

Summary

Line segment intersection

Problem

Given a set of n vertical and horizontal line segments, report all
intersection points among them

• Again, a trivial brute force algorithm runs in O(n2) time.

• A line sweep algorithm can reduce this to O(n log n).
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Algorithm

• Make a sorted list of all the x-coordinates at which some
event happens (either a vertical line, or start or end of a
horizontal line)

• We iterate through the events:

• We keep a set of current horizontal lines (sorted by
y-coordinate). We simply add or remove from the set
whenever we hit the start or end of a horizontal line.

• When we come across a vertical line, we do a range search
in our set to obtain intersections.
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Code

Pseudocode:

sort(events, events+e)

set s

for i in range(e):

c = events[i]

if c is starting point:

s.insert(c.p1)

else if end point:

s.erase(c.p2)

else:

for (it = c.p1, it < c.p2):

#Intersection at c and s[it]
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Time Complexity

• Using a set, insertion and removal is done in O(log n)
time.

• Finding the required range is O(log n), plus an additional
O(I) to note the I intersections.

• Total time is O(n log n+ I) time for I intersections. Just
counting the intersections can be done in O(n log n) time
using an augmented binary tree structure (store number of
nodes)

• Algorithm can be generalised for arbitrary line segments
(use a priority queue to handle events)
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Area of the union of rectangles

Problem

Given a set of rectangles, calculate the area of its union.

• Again, we use a line sweep, keeping track of the important
events with an active set.
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Algorithm

• As before, we keep a sorted list of events which we iterate
through, namely the left and right edge of our rectangles.

• When we cross a left edge, the rectangle is added to the
set, and removed once we cross over the right edge.

• We then do another line sweep running top-down within
our active set to determine the total length of the main
line sweep which is cut by rectangles.

• Multiplying this by the difference in x-coordinates when
we step to the next event, and totalling, gives us the total
union area.

• Using a Boolean array to store our active set will result in
O(n2) time. This can be improved to O(n log n) time
using binary tree manipulation tricks within the inner loop.
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Convex hull

Problem

Given a set of n points in the plane, find the convex hull.

• A brute force will run in O(n2) time.

• A Graham scan is faster. Does sorting by angle and runs in
O(n log n) time.

• Can be expensive to compute angles and may get numeric
errors.

• A simpler solution is to simply sort by x-coordinate and
sweep line. (Andrew’s algorithm)
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Algorithm

• We compute the convex hull in two parts: the upper hull
and the lower hull.

• For the upper hull, we sort all points by their x-coordinate
and incrementally add points in sorted order, building up
the hull.

• We keep track of the last three points. If it is concave, we
discard the second last point (we know it’s not on the
hull) and repeat the process.

• This is essentially the same procedure as a Graham scan,
except sorted by x-coordinate instead of angle.

• The lower hull is done in a similar manner.
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except sorted by x-coordinate instead of angle.

• The lower hull is done in a similar manner.
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Code

Pseudocode:

sort(points, points+n, xcomp)

u = [], l = []

for i in range(1, n):

while l[-2], l[-1], points[i] makes CW turn:

l.pop

l.append(points[i])

for i in range(n, 1):

while u[-2], u[-1], points[i] makes CW turn:

u.pop

u.append(points[i])

return concat(l, u)
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Summary

• Line sweep algorithms can be extremely powerful and can
be used to solve a variety of problems.

• There are numerous other more advanced problems such
as Delaunay triangulations and minimum spanning trees
for certain metrics that can be solved using line sweep
techniques.
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